级数收敛是数列收敛的什么条件
级数收敛是数列收敛的必要条件。收敛级数是柯西于1821年引进的,它是指部分和序列的极限存在的级数。收敛级数分条件收敛级数和绝对收敛级数两大类,其性质与有限和(有限项相加)相比有本质的差别,例如交换律和结合律对它不一定成立。
收敛对于路由协议,网络上的路由器在一条路径不能使用时必须经历决定替代路径的过程,是在最佳路径的判断上所有路由器达到一致的过程。当某个网络事件引起路由可用或不可用时,路由器就发出更新信息。
级数收敛的条件
级数收敛的必要条件是通项an趋于0。一般验证一个级数是否收敛,首先看通项an是否趋于0,若不满足这条则可以判断该级数发散。如果这条满足,并不能保证级数收敛。需要继续验证别的条件,例如用比较判别法(和一个知道的收敛级数比较)。例如an=1/n,通项趋于0,但是发散。
级数是指将数列的项依次用加号连接起来的函数。典型的级数有正项级数、交错级数、幂级数、傅里叶级数等。级数理论是分析学的一个分支;它与另一个分支微积分学一起作为基础知识和工具出现在其余各分支中。二者共同以极限为基本工具,分别从离散与连续两个方面,结合起来研究分析学的对象,即变量之间的依赖关系─函数。
|级数收敛是数列收敛的什么条件
收敛数列 数列极限 条件收敛 级数收敛是数列收敛的什么条件 级数收敛的条件