实数的定义,实数指的是什么
实数,是有理数和无理数的总称。数学上,实数定义为与数轴上的实数,点相对应的数。实数可以直观地看作有限小数与无限小数,实数和数轴上的点一一对应。但仅仅以列举的方式不能描述实数的整体。实数和虚数共同构成复数。
实数可以分为有理数和无理数两类,或代数数和超越数两类。实数集通常用黑正体字母R表示。R表示n维实数空间。实数是不可数的。实数是实数理论的核心研究对象。
所有实数的集合则可称为实数系(realnumbersystem)或实数连续统。任何一个完备的阿基米德有序域均可称为实数系。在保序同构意义下它是惟一的,常用R表示。由于R是定义了算数运算的运算系统,故有实数系这个名称。
实数可以用来测量连续的量。理论上,任何实数都可以用无限小数的方式表示,小数点的右边是一个无穷的数列(可以是循环的,也可以是非循环的)。在实际运用中,实数经常被近似成一个有限小数(保留小数点后n位,n为正整数)。在计算机领域,由于计算机只能存储有限的小数位数,实数经常用浮点数来表示。
实数的定义 实数的定义是什么
实数的定义:实数是有理数和无理数的总称。实数包括有理数和无理数,实数集通常用字母R表示。实数集与数轴上的点有着一一对应的关系,任一实数都对应着数轴上的唯一一个点。
实数是什么
1871年,德国数学家康托尔第一次提出了实数的严格定义。整数和小数的集合也是实数,实数是有理数和无理数的集合。而整数和分数统称有理数,所以整数和小数的集合也是实数。小数分为有限小数、无限循环小数、无限不循环小数(即无理数),其中有限小数和无限循环小数均能化为分数,所以小数即为分数和无理数的集合,加上整数,即实数。
实数可实现的基本运算有加、减、乘、除、乘方等,对非负数(即正数和0)还可以进行开方运算。实数加、减、乘、除(除数不为零)、平方后结果还是实数。
实数的定义 实数的定义是什么
实数的定义为:实数,是有理数和无理数的总称。数学上,实数定义为与数轴上的点相对应的数。实数可以直观地看作有限小数与无限小数,实数和数轴上的点一一对应。但仅仅以列举的方式不能描述实数的整体。实数和虚数共同构成复数。
实数的性质
(1)封闭性:实数集对加、减、乘、除、除数不为零的情况下的四则运算是具有封闭性的,就是任意两个实数的和、差、积、商仍然是实数。
(2)传递性:实数的大小具有传递性,就是若a>b,并且b>c,那么a>c。
(3)有序性:实数集是具有序性的,就任意两个实数a、b必须要满足而且只满足以下三个关系之一:a b
(4)稠密性:实数集是具有稠密性的,就是两个不相等的实数之间必定有另外一个实数,比如既有有理数,也有无理数。
(5)完备性:实数集合是一个完备空间,具有完备性。
|实数的定义,实数指的是什么
实数指的 实数的定义 实数的定义