方程有实根的条件
方程有实根的条件为,一元二次方程中,b2-4ac不小于0;一元一次方程中,未知数系数不为0;二元一次方程组中自变量系数不相等;一元一次不等式组中,两个解集有交集。
一元二次方程
b2-4ac>0时,方程有两个不同实根。
b2-4ac=0时,方程有两个相同实根即重根。
一元一次方程
ax=b,当a≠0时方程有实根。
二元一次方程组
y=ax+b①
y=Ax+B②
a≠A时方程有实根。
方程有实根是什么意思
方程有实根是指有满足该方程的实数解。根就是方程的解,实根就是指方程式的解为实数的解。实数包括正数,负数和0。有些方程有增根,需检验,再舍去。
方程
方程是表示两个数学式(如两个数、函数、量、运算)之间相等关系的一种等式,是含有未知数的等式,通常在两者之间有一等号“=”。方程不用按逆向思维思考,可直接列出等式并含有未知数。它具有多种形式,如一元一次方程、二元一次方程等。广泛应用于数学、物理等理科应用题计算。
方程的解法
去分母:在方程两边都乘以各分母的最小公倍数;
去括号:先去小括号,再去中括号,最后去大括号。
移项:把含有未知数的项都移到方程的一边,其他项都移到方程的另一边,移项要变号;
合并同类项:把方程化成ax=b(a≠0)的形式。
一元二次方程有实根的条件
一元二次方程ax2+bx+c=0有实根的条件:b2-4ac≥0,且a≠0。由代数基本定理,一元二次方程有且仅有两个根(重根按重数计算),根的情况由判别式(△=b2-4ac)决定。
判别式
利用一元二次方程根的判别式可以判断方程的根的情况。
一元二次方程ax2+bx+c=0(a≠0)的根与根的判别式(△=b2-4ac)有如下关系:
①当△>0时,方程有两个不相等的实数根;
②当△=0时,方程有两个相等的实数根;
③当△<0时,方程无实数根,但有2个共轭复根。
上述结论反过来也成立。
什么是实根
根就是指方程的解,所谓实根就是指方程式的解为实数解。实数包括正数,负数和0。有些方程有增根,需要检验之后再舍去。实数根就是指方程式的解为实数,实数根也经常被叫为实根。
|方程有实根的条件
一元一次方程 一元二次方程有实根的条件 实数 数学 方程有实根意思 方程有实根的条件