两条平行线间可以画几条垂线
两条平行线间可以画无数条垂线,在两条平行线间,画垂直的线段,也就是平行线间的距离,平行线间的距离相等且互相平行。
几何中,在同一平面内,永不相交(也永不重合)的两条直线叫做平行线。
平行线是公理几何中的重要概念。欧氏几何的平行公理,可以等价的陈述为"过直线外一点有唯一的一条直线和已知直线平行"。而其否定形式"过直线外一点没有和已知直线平行的直线"或"过直线外一点至少有两条直线和已知直线平行",则可以作为欧氏几何平行公理的替代,而演绎出独立于欧氏几何的非欧几何。
如果两条直线都与第三条直线平行,那么这两条直线也互相平行。如若a∥b,b∥c,则a∥c.
过直线外一点可以画几条垂线
当两条直线相交所成的四个角中,有一个角是直角时,即两条直线互相垂直,其中一条直线叫做另一直线的垂线。平面内,过直线外一点画已知直线的垂线,可以画1条;空间中,过直线外一点画已知直线的垂线,可以画无数条。
(1)平面内,过直线外一点画已知直线的垂线,可以画1条:
证明如下:
设直线为L,直线外一点为A,假设过点A可以做两条直线与L垂直,垂足分别为B与C,由于AB⊥L,AC⊥L,所以AB//AC,又因为AB与AC交于点A,这与AB//AC相矛盾,所以原假设不成立,即过点A可以做1条直线与L垂直。
(2)空间中,过直线外一点画已知直线的垂线,可以画无数条:
由于空间中对于垂直的定义与平面有所不同,两直线不一定要相交,异面直线也可以垂直,因此,可先找到过点A与L垂直的平面,根据空间直线的方向向量与A点的坐标,可以确定平面的方程,在这个平面上过点A的任一一条直线都与L垂直,因此有无数条。
|两条平行线间可以画几条垂线
两条平行线间可以画几条垂线 过直线外一点可以画几条垂线