一元二次方程根与系数关系是什么
根与系数之间的关系,又称韦达定理。指的是如果方程ax平方+bx+c=0(a不等于0)的两根为xx2,那么x1+x2=-b/a,x1x2=c/a。
韦达定理通常解决一些已知方程求两根的某种运算。如方程x平方+5x-10=0的两个根分别是xx2,不解方程求1/x1+1/x2;x1平方+x2平方;x1立方+x2立方等;已知方程两个根的某种关系求方程中的待定系数;解决直线与圆锥曲线的交点问题,弦长问题等。
一元二次方程根与系数的关系
韦达定理的应用其实有很多方面,比如题意中告诉方程的一个根,求另一个根以及确定方程某个参数的值;或者已知原方程,求关于方程的两根的代数式的值等等。
“一元二次方程根与系数的关系”一般指的是一元二次方程ax²+bx+c=0的两个根x1,x2与系数的关系。即 x1+x2,b/a,x1·x2=c/a,这个公式通常称为韦达定理。
也就是说当一元二次方程的二次项系数为1时,设x1,x2是方程x^2+bx+c=0则x1+x2=-b,x1·x2=c,这反映了一元二次方程的两根之积与两根之和同系数a,b,c的关系,这就是韦达定理。
根与系数的关系是什么
根与系数的关系一般指的是一元二次方程ax²+bx+c=0的两个根x1,x2与系数的关系。即x1+x2=-b/a,x1·x2=c/a,这个公式通常称为韦达定理。
根与系数的关系简单相关系数:又叫相关系数或线性相关系数。它一般用字母r表示。它是用来度量定量变量间的线性相关关系。复相关系数又叫多重相关系数复相关是指因变量与多个自变量之间的相关关系。例如,某种商品的需求量与其价格水平、职工收入水平等现象之间呈现复相关系。
|一元二次方程根与系数关系是什么
一元二次方程根与系数关系 一元二次方程根与系数的关系 根与系数的关系