平面向量基本定理是什么
如果两个向量a、b不共线,那么向量p与向量a、b共面的充要条件是:存在唯一实数对x、y,使p=xa+yb。
事实上,这个定理表明,平面向量可以在任意给定的两个方向上分解,任意两个向量都可以合成一个给定的向量,即向量的合成和分解。
当两个方向相互垂直时,它们实际上是在直角坐标系中分解的,(x,y)称为矢量的坐标。(矢量的起点是原点)所以这个定理为矢量的坐标表示提供了理论基础。
平面向量的基本定理是什么
平面向量的基本定理是如果两个向量a、b不共线,那么向量p与向量a、b共面的充要条件是:存在唯一实数对x、y,使p=xa+by。此定理其实说明了平面向量可以沿任意指定的两方向分解。
同时也说明了由任意两向量可以合成指定向量,即向量的合成与分解。当两个方向相互垂直时,其实就是把他们在直角坐标系中分解,此时(x,y)就称为此向量的坐标。所以此定理为向量的坐标表示提供了理论依据。
|平面向量的基本定理是什么
平面向量基本定理 平面向量的基本定理