不动点法求数列通项原理
不动点法求数列通项原理是不动点是使f(x)=x的x值,设不动点为x0,则f(x0)-x0=0,即x是f(x)-x0=0的根,所以f(x)-x0因式分解时有x-x0这个因子,对数列有a(n+1)=f(an),两边同时减去不动点x0有a(n+1)-x0=f(an)-x0,f(an)-x0只不过是把x换成了an,所以f(an)-x0有an-x0这个因子,所以a(n+1)-x0=(an-x0)*g(an),减去不动点后两边出现了形式相同的项an-x0,g(an)则相当于公比。
不动点法(fixedpointmethod)是解方程的一种一般方法,对研究方程解的存在性、唯一性和具体计算有重要的理论与实用价值。
特征根法求数列通项原理
特征根法求数列通项原理是数列{a(n)},设递推公式为a(n+2)=p*a(n+1)+q*a(n),则其特征方程为x^2-px-q=0。若方程有两相异根A、B,则a(n)=c*A^n+d*B^n,若方程有两等根A=B,则a(n)=(c+nd)*A^n。
按一定次序排列的一列数称为数列,而将数列{an}的第n项用一个具体式子(含有参数n)表示出来,称作该数列的通项公式。这正如函数的解析式一样,通过代入具体的n值便可求知相应an项的值。
|不动点法求数列通项原理
不动点 不动点法求数列通项原理 数列公式 数列通项公式 特征根法求数列通项原理