单位矩阵的性质
根据矩阵乘法的定义,单位矩阵的特征值皆为1,任何向量都是单位矩阵的特征向量。因为特征值之积等于行列式,所以单位矩阵的行列式为1,因为特征值之和等于迹数,单位矩阵的迹为n。
在矩阵的乘法中,有一种矩阵起着特殊的作用,如同数的乘法中的1,这种矩阵被称为单位矩阵。矩阵是个方阵,从左上角到右下角的对角线即主对角线上的元素均为1,除此以外全都为0。根据单位矩阵的特点,任何矩阵与单位矩阵相乘都等于本身,而且单位矩阵因此独特性在高等数学中也有广泛应用。
单位矩阵的平方是什么
单位矩阵的平方是单位矩阵!单位矩阵的n次方都是单位矩阵(n∈N+)单位矩阵的逆矩阵还是单位矩阵。单位矩阵的特点,任何矩阵与单位矩阵相乘都等于本身,而且单位矩阵因此独特性在高等数学中也有广泛应用。
在矩阵的乘法中,有一种矩阵起着特殊的作用,如同数的乘法中的1,这种矩阵被称为单位矩阵。它是个方阵,从左上角到右下角的对角线(称为主对角线)上的元素均为1。除此以外全都为0。
|单位矩阵的性质
单位矩阵 单位矩阵的平方 单位矩阵的性质 矩阵 矩阵乘法