坐标向量的投影怎么求
坐标向量的投影设点A(x1,y1,z1),B(x2,y2,z2),向量AB=(x2-x1,y2-y1,z2-z1),它在XOY面上的投影=(x2-x1,y2-y1,0),它在YOZ面上的投影=(0,y2-y1,z2-z1),它在XOZ面上的投影=(x2-x1,0,z2-z1)。
在数学中,向量(也称为欧几里得向量、几何向量、矢量),指具有大小(magnitude)和方向的量。它可以形象化地表示为带箭头的线段。箭头所指:代表向量的方向;线段长度:代表向量的大小。与向量对应的量叫做数量(物理学中称标量),数量(或标量)只有大小,没有方向。
向量的记法:印刷体记作黑体(粗体)的字母(如a、b、u、v),书写时在字母顶上加一小箭头“→”。如果给定向量的起点(A)和终点(B),可将向量记作AB(并于顶上加→)。在空间直角坐标系中,也能把向量以数对形式表示,例如xOy平面中(2,3)是一向量。
向量的投影怎么求
设两个向量a和b,向量a在向量b上的投影也是一个向量,不妨记做向量c
则有c与b共线,方向取决于a与b的夹角,由此推导出求解向量的投影的公式:|c|=|a|*|cos|。
向量的记法:印刷体记作黑体(粗体)的字母(如a、b、u、v),书写时在字母顶上加一小箭头“→”。如果给定向量的起点(A)和终点(B),可将向量记作AB(并于顶上加→)。在空间直角坐标系中,也能把向量以数对形式表示。
点在平面上的投影点坐标怎么求
首先坐标定义为:确定天球上某一点的位置,在天球上建立的球面坐标系;点在平面上的投影点坐标求法:利用平面的法线,做出过点平行于平面法线的直线方程,然后和平面求交就可以了,比如设投影点N(x,y,z),向量MN=(x,y,z-1),平行于法向量(z-1)/1=0,z=1,向量M1N=(x,y,z),向量MN垂直于向量M1N,所以x^2+y^2+z(z-1)=0,z=1,x=y=0,所以投影点为:(0,0,1)。
|坐标向量的投影怎么求
向量的投影怎么求 坐标向量的投影怎么求 点在平面上的投影点坐标怎么求