勾股之学出自哪本书
勾股之学出自《周髀算经》。
公元前十一世纪,周朝数学家商高就提出“勾股弦五”。《周髀算经》中记录着商高同周公的一段对话。商高说:“…故折矩,勾广三,股修四,经隅五。”意为:当直角三角形的两条直角边分别为3(勾)和4(股)时,径隅(弦)则为5。以后人们就简单地把这个事实说成“勾三股四弦五”,根据该典故称勾股定理为商高定理。
公元三世纪,三国时代的赵爽对《周髀算经》内的勾股定理作出了详细注释,记录于《九章算术》中“勾股各自乘,并而开方除之,即弦”,赵爽创制了一幅“勾股圆方图”,用形数结合得到方法,给出了勾股定理的详细证明。后刘徽在刘徽注中亦证明了勾股定理。
在中国清朝末年,数学家华蘅芳提出了二十多种对于勾股定理证法。
勾股之学是出自什么地方
在中国,周朝时期的商高提出了“勾三股四弦五”的勾股定理的特例。在西方,最早提出并证明此定理的为公元前6世纪古希腊的毕达哥拉斯学派,他用演绎法证明了直角三角形斜边平方等于两直角边平方之和。
勾股定理
勾股定理,是一个基本的几何定理,指直角三角形的两条直角边的平方和等于斜边的平方。中国古代称直角三角形为勾股形,并且直角边中较小者为勾,另一长直角边为股,斜边为弦,所以称这个定理为勾股定理,也有人称商高定理。
勾股定理的意义
1.勾股定理的证明是论证几何的发端。
2.勾股定理是历史上第一个把数与形联系起来的定理,即它是第一个把几何与代数联系起来的定理。
3.勾股定理导致了无理数的发现,引起第一次数学危机,大大加深了人们对数的理解。
4.勾股定理是历史上第—个给出了完全解答的不定方程,它引出了费马大定理。
5.勾股定理是欧氏几何的基础定理,并有巨大的实用价值。这条定理不仅在几何学中是一颗光彩夺目的明珠,被誉为“几何学的基石”,而且在高等数学和其他科学领域也有着广泛的应用。1971年5月15日,尼加拉瓜发行了一套题为“改变世界面貌的十个数学公式”邮票,这十个数学公式由著名数学家选出的,勾股定理是其中之首。
千里之行始于足下出自哪本书
《道德经》。《道德经》是春秋时期老子(李耳)所著的哲学作品,又称《道德真经》、《五千言》等,是道家哲学思想的重要来源,也是中国历史上最伟大的名著之一,被誉为“万经之王”。
该书原文分上篇《德经》和下篇《道经》,不分章,后分1到37章为《道经》,38到81章为《德经》。它以哲学意义之“道德”为纲宗,论述修身、治国、用兵、养生之道,而多以政治为旨归,乃所谓“内圣外王”之学,文意深奥,包涵广博。
|勾股之学出自哪本书
勾股之学出自哪本书 勾股之学是出自什么地方 千里之行始于足下出自哪本书