首页 > 寺庙

变量之间的关系有几种 变量间的相关关系|

变量之间的关系有几种 变量间的相关关系

变量间的相关关系 变量之间的关系有几种

变量之间的关系有几种 变量间的相关关系|

1会作两个有关联变量的数据的散点图,会利用散点图认识变量间的相关关系.

2了解最小二乘法的思想,能根据给出的线性回归方程系数公式建立线性回归方程.

回归分析

了解回归分析的基本思想、方法及其简单应用.

知识点详解

1.相关关系

当自变量取值一定时,因变量的取值带有一定的随机性,则这两个变量之间的关系叫做相关关系.即相关关系是一种非确定性关系.

当一个变量的值由小变大时,另一个变量的值也由小变大,则这两个变量正相关;

当一个变量的值由小变大时,而另一个变量的值由大变小,则这两个变量负相关.

【注意】相关关系与函数关系的异同点:

共同点:二者都是指两个变量间的关系.

不同点:函数关系是一种确定性关系,体现的是因果关系;而相关关系是一种非确定性关系,体现的不一定是因果关系,可能是伴随关系.

2.散点图

从散点图上看,点散布在从左下角到右上角的区域内,两个变量的这种相关关系称为正相关,点散布在从左上角到右下角的区域内,两个变量的相关关系为负相关.

具有正相关关系的两个变量的散点图如图1,具有负相关关系的两个变量的散点图如图2.

3.回归分析

如果散点图中点的分布从整体上看大致在一条直线附近,则这两个变量之间具有线性相关关系,这条直线叫做回归直线.

回归直线对应的方程叫做回归直线方程 简称回归方程.

4.回归方程的求解

5.相关系数

1样本相关系数r的计算公式

6.非线性回归分析

对某些特殊的非线性关系,可以通过变量转换,把非线性回归问题转化成线性回归问题,然后用线性回归的方法进行研究.

在大量的实际问题中,所研究的两个变量不一定都呈线性相关关系,当两变量y与x不具有线性相关关系时,要借助散点图,与已学过的函数 如指数函数、对数函数、幂函数等的图象相比较,找到合适的函数模型,利用变量代换转化为线性函数关系,从而使问题得以解决.

7.刻画回归效果的方式

考向分析

考向一 相关关系的判断

考向二 线性回归方程及应用

考向三 非线性回归方程及应用

求非线性回归方程的步骤:

1.确定变量,作出散点图.

2.根据散点图,选择恰当的拟合函数.

3.变量置换,通过变量置换把非线性回归问题转化为线性回归问题,并求出线性回归方程.

4.分析拟合效果:通过计算相关指数或画残差图来判断拟合效果.

5.根据相应的变换,写出非线性回归方程.

变量之间的关系有几种

变量之间的关系是相关关系。相关关系是客观现象存在的一种非确定的相互依存关系,即自变量的每一个取值,因变量由于受随机因素影响,与其所对应的数值是非确定性的。

变量相关关系

相关分析中的自变量和因变量没有严格的区别,可以互换。变量相关关系:当一个或几个相互联系的变量取一定的数值时,与之相对应的另一变量的值虽然不确定,但它仍按某种规律在一定的范围内变化。变量间的这种相互关系,称为具有不确定性的相关关系。

函数关系

当一个或几个变量取一定的值时,另一个变量有确定值与之相对应,我们称这种关系为确定性的函数关系。马赫的要素一元论把科学和认识所及的世界归结为要素的复合,又把要素解释为感觉,认为这个世界以人的感觉为转移。他指出,人的感觉是相同的,对于同一对象,不同的人乃至同一个人在不同的情况下会有不同的感觉,因此,世界上事物的存在只是相对的。


|变量之间的关系有几种、变量间的相关关系

      

变量之间的关系有几种 变量间的相关关系|
  • 线性回归方程公式是什么|
  • 线性回归方程公式是什么| | 线性回归方程公式是什么| ...

    变量之间的关系有几种 变量间的相关关系|
  • python与php的区别|
  • python与php的区别| | python与php的区别| ...

    变量之间的关系有几种 变量间的相关关系|
  • 什么叫离散型数据|
  • 什么叫离散型数据| | 什么叫离散型数据| ...