解向量和基础解系区别
区别主要是:解向量指的是方程组的解,而基础解系是在齐次线性方程组的解里面的一些特殊解,同时这些解还能表示出所有的解,并且个数还是最少的,基础解系是在有无数多组解的方程的情况下讨论的。
解向量是线性方程组的一个解。因为一组解在空间几何里可以表示为一个向量,所以叫做解向量。解向量在矩阵和线性方程组中是常用概念。如果n元齐次线性方程组Ax=0的系数矩阵的秩R(A)=r
基础解系是指方程组的解集的极大线性无关组,即若干个无关的解构成的能够表示任意解的组合。
基础解系和解向量关系
基础解系和解向量关系:齐次线性方程组的解中的一些特殊解,这些解能表示出所有解,并且个数最少,基础解系是指方程组的解集的极大线性无关组,即若干个无关的解构成的能够表示任意解的组合。
基础解系需要满足三个条件:
(1)基础解系中所有量均是方程组的解。
(2)基础解系线性无关,即基础解系中任何一个量都不能被其余量表示。
(3)方程组的任意解均可由基础解系线性表出,即方程组的所有解都可以用基础解系的量来表示。值得注意的是:基础解系不是唯一的,因个人计算时对自由未知量的取法而异。
|解向量和基础解系区别
向量组的秩 基础解系和解向量关系 解向量和基础解系区别