求特征值的技巧
先把特征值代入特征方程,然后运用初等行变换法,之后将矩阵化到最简,最后可得到基础解系。特征值是线性代数中的一个重要概念。
在数学、物理学、化学、计算机等领域有着广泛的应用。设A是n阶方阵,如果存在数m和非零n维列向量x,使得Ax=mx成立,则称m是A的一个特征值或本征值。
对称矩阵求特征值技巧
单论这个矩阵而言(记成A),当然是有简单办法的,一眼就能看出特征值是2,2,2,-2。
道理很简单,目测就知道A的列互相正交,且每列的模都是2(或者直接验证A^TA=4I),就是说A/2是实对称的正交阵,所以A/2的特征值只能是1或-1,即A的特征值是2或-2。
trA=4是四个特征值的和,所以其中三个是2,余下的是-2。
如何求特征值
特征值是线性代数中的一个重要概念。在数学、物理学、化学、计算机等领域有着广泛的应用。设A是n阶方阵,如果存在数m和非零n维列向量x,
使得Ax=mx成立,则称m是A的一个特征值(characteristicvalue)或本征值(eigenvalue)。非零n维列向量x称为矩阵A的属于(对应于)特征值m的特征向量或本征向量,简称A的特征向量或A的本征向量。
求n阶矩阵A的特征值的基本方法:
根据定义可改写为关系式,为单位矩阵(其形式为主对角线元素为λ-,其余元素乘以-1)。要求向量具有非零解,即求齐次线性方程组有非零解的值。即要求行列式。解次行列式获得的值即为矩阵A的特征值。将此值回代入原式求得相应的,即为输入这个行列式的特征向量。
|求特征值的技巧
如何求特征值 对称矩阵求特征值技巧 数学 求特征值的技巧 矩阵 矩阵特征值 行列式