首页 > 寺庙

证明勾股定理的方法真题|

证明勾股定理的方法真题

首先设△ABC为一直角三角形,其中A为直角。从A点划一直线至对边,使其垂直于对边。延长此线把对边上的正方形一分为二,其面积分别与其余两个正方形相等。

证明勾股定理的方法真题|

设△ABC为一直角三角形,其直角为∠CAB。其边为BC、AB和CA,依序绘成四方形CBDE、BAGF和ACIH。

画出过点A之BD、CE的平行线,分别垂直BC和DE于K、L。分别连接CF、AD,形成△BCF、△BDA。

∠CAB和∠BAG都是直角,因此C、A和G共线,同理可证B、A和H共线。∠CBD和∠FBA都是直角,所以∠ABD=∠FBC。

因此AB2+AC2=BC2,即a2+b2=c2。即证明了勾股定理。

勾股定理证明方法

勾股定理证明方法:以ab为直角边,以c为斜边做四个全等的直角三角形,则每个直角三角形的面积等于2分之一ab。AEB三点在一条直线上,BFC三点在一条直线上,CGD三点在一条直线上。证明四边形EFGH是一个边长为c的正方形后即可推出勾股定理。

勾股定理,是一个基本的几何定理,指直角三角形的两条直角边的平方和等于斜边的平方。中国古代称直角三角形为勾股形,并且直角边中较小者为勾,另一长直角边为股,斜边为弦,所以称这个定理为勾股定理,也有人称商高定理。

勾股定理的证明方法

以a、b为直角边,以c为斜边做四个全等的直角三角形,则每个直角三角形的面积等于2分之一ab,AEB三点在一条直线上,BFC三点在一条直线上,CGD三点在一条直线上,证明四边形EFGH是一个边长为c的正方形后即可推出勾股定理。

勾股定理,是一个基本的几何定理,指直角三角形的两条直角边的平方和等于斜边的平方。中国古代称直角三角形为勾股形,并且直角边中较小者为勾,另一长直角边为股,斜边为弦,所以称这个定理为勾股定理,也有人称商高定理。

勾股定理现约有500种证明方法,是数学定理中证明方法最多的定理之一。勾股定理是人类早期发现并证明的重要数学定理之一,用代数思想解决几何问题的最重要的工具之一,也是数形结合的纽带之一。


|证明勾股定理的方法真题

   

证明勾股定理的方法真题|
  • cos270度等于多少啊|
  • cos270度等于多少啊| | cos270度等于多少啊| ...

    证明勾股定理的方法真题|
  • cos等于1的角度是多少度|
  • cos等于1的角度是多少度| | cos等于1的角度是多少度| ...

    证明勾股定理的方法真题|
  • 四个小正方体可以拼成什么图形|
  • 四个小正方体可以拼成什么图形| | 四个小正方体可以拼成什么图形| ...