收敛的必要条件
收敛的必要条件是通项an趋于0,一般验证一个级数是否收敛,首先看通项an是否趋于0,若不满足这条则可以判断该级数发散。如果这条满足,并不能保证级数收敛。需要继续验证别的条件,例如用比较判别法。
收敛级数的基本性质主要有:级数的每一项同乘一个不为零的常数后,它的收敛性不变,两个收敛级数逐项相加或逐项相减之后仍为收敛级数,在级数前面加上有限项,不会改变级数的收敛性,原级数收敛,对此级数的项任意加括号后所得的级数依然收敛。
级数是研究函数的一个重要工具,在理论上和实际应用中都处于重要地位,这是因为:
(1)一方面能借助级数表示许多常用的非初等函数,微分方程的解就常用级数表示。
(2)另一方面又可将函数表为级数,从而借助级数去研究函数,例如用幂级数研究非初等函数,以及进行近似计算等。
级数收敛的必要条件
级数收敛的必要条件:通项an趋于0。一般验证一个级数是否收敛,首先看通项an是否趋于0,若不满足这条则可以判断该级数发散。如果这条满足,并不能保证级数收敛。
级数是指将数列的项依次用加号连接起来的函数。典型的级数有正项级数、交错级数、幂级数、傅里叶级数等。级数理论是分析学的一个分支;它与另一个分支微积分学一起作为基础知识和工具出现在其余各分支中。二者共同以极限为基本工具,分别从离散与连续两个方面,结合起来研究分析学的对象,即变量之间的依赖关系──函数。
|收敛的必要条件
收敛的必要条件 级数收敛的必要条件