首页 > 寺庙

有理数无理数区分|

有理数无理数区分

有理数是整数(正整数、0、负整数)和分数的统称,是整数和分数的集合。无理数,也称为无限不循环小数,不能写作两整数之比。若将它写成小数形式,小数点之后的数字有无限多个,并且不会循环。常见的无理数有非完全平方数的平方根、π和e(其中后两者均为超越数)等。无理数的另一特征是无限的连分数表达式。无理数最早由毕达哥拉斯学派弟子希伯索斯发现。

有理数无理数区分|

21和14的最小公倍数是42。最大公因数和最小公倍数之间的性质:两个自然数的乘积等于这两个自然数的最大公约数和最小公倍数的乘积。最小公倍数的计算要把三个数的公有质因数和独有质因数都要找全,最后除到两两互质为止。

方法分解质因数法求最小公倍数。

14=2x7

21=3x7

所以最小公倍数:2x3x7=42。

方法短除法求最大公约数。

先用这几个数的公约数连续去除,一直除到所有的商互质为止,然后把所有的除数连乘起来,所得的积就是这几个数的最大公约数。

短除法求最小公倍数,先用这几个数的公约数去除每个数,再用部分数的公约数去除,并把不能整除的数移下来,一直除到所有的商中每两个数都是互质的为止,然后把所有的除数和商连乘起来,所得的积就是这几个数的最小公倍数。

什么是有理数无理数 有理数无理数是什么

有理数是“数与代数”领域中的重要内容之一,在现实生活中有广泛的应用,是继续学习实数、代数式、方程、不等式、直角坐标系、函数、统计等数学内容以及相关学科知识的基础。数学上,有理数是一个整数a和一个正整数b的比,例如3/8,通则为a/b。0也是有理数。

无理数,也称为无限不循环小数,不能写作两整数之比。若将它写成小数形式,小数点之后的数字有无限多个,并且不会循环。

从有理数与无理数的比较开始 有理数和无理数

有理数和无理数 从有理数与无理数的比较开始

有理数有无数个

无理数也有无数个

那谁更多?还是一样多?

无穷与无穷,是否可以比出谁多谁少?

数轴上的点对应有理数或无理数?

那有理数和无理数又是如何在数轴上分布?

NO.1如何比较无穷

当我们比较有限的数量时,只要比较具体的数字谁大即可。鸡有两条腿,兔有四条腿,所以兔子腿更多。有理数有无数个,无理数也有无数个,或许我们可以认为是都是无数个,都是数不完的,那就一样多呗,但实际上无限也可以分出大小,因为比较有限数量的方法并不能用于无穷的情况。

如何比较无穷?

所有的正数和负数一样多。

在正数集里任取一个正数,在负数集合里都能找到唯一确定的一个负数与其相对应,比如正数集中取1,负数集里会有-1,正数集里取,负数集里会有-,有一个正数,就会有一个相应的负数。

我们可以在正数集和负数集间建立一种一一对应的关系。所以正数与负数是一样多。

同样的道理,我们可以得出奇数和偶数是一样多的。

任取一个奇数2n-1,都会有一个偶数2n与其相对应,同样我们可以在奇数集和偶数集之间建立这种一一对应的关系,所以奇数和偶数也是一样多的。

我们把集合里元素的数量称为集合的基数,比如集合{1}的基数为1,集合{1,2}的基数为2。

判断无穷集合基数相等的方法便是:能够两个集合之间建立起一种一一对应的关系。

NO.2整体可以等于部分

如果关于无穷的比较都像上面那么简单就好了,接下来我们继续看。

所有的偶数和所有的整数一样多。

What?偶数不是和奇数一样多吗?奇数和偶数一起构成了整数,偶数怎么和整数也一样多了?

整数集合里任取一整数n,在偶数集合里都会有一个数2n与其相对应,所以我们依然可以在整数集和偶数集之间建立起一一对应的关系,在偶数集里任取一个偶数,在整数集里都会有一个唯一确定的元素与其相对应。

整体等于部分!这是我们在有限里不可能存在的情况,但在无穷集合里,却真真实实地发生了。

如果对于数没感觉我们再来看个图形的例子,在△ABC中,假定BC边为2,DE是BC边所对的中位线,所以DE=1,在BC边上任取点M,连接AM,则AM必与DE有一交点,记为N。任取一个M点都会有一个N点与其相对应。

这说明:长度为2的线段上的点与长度为1的线段上的点是一样多的!!!

格奥尔格康托尔甚至以此作为无穷集合的定义:如果一个集合能够和它的一部分构成一一对应的关系,它就是无穷集合。

了解了无穷这一性质,那我们得出这么一个结论:自然数、偶数、整数都是一样多的。或许你会质疑既然他们都无穷,那就数量都一样呗,还需要讨论这么多嘛?

需要,之所以说这几个集合基数相等,是因为它们还有一个共同的特点:可数。

所谓可数,可以理解为能够找到一种规则把所有的数列出来,然后就可以按着这个顺序一直数下去。

比如自然数,0,1,2,3,4,5……,比如偶数,0,2-2,4-4,6-6……而只要能全部列出来,就可以建立一一对应的关系,依次按顺序对应就好了,甚至都不用弄明白具体的规则是什么,所以只要是可数无穷,就可以说集合里元素数量是一样多的。

NO.3有理数可数吗?

可数

有理数可以表示为q/p的形式,取正有理数部分,我们可以按p+q的值由小到大来列出所有正有理数,具体的顺序可以参照下图。

按上述规则,可列出所有正有理数,负有理数亦可以列出来。

所以有理数集也是可数集。

补充一下可数集概念:能与自然数集建立一一对应关系的集合。

可数集的基数是最小的无穷量,康托尔把这个量记为ℵ0 希伯来文,读作“阿列夫零”。同时康托尔指出,阿列夫零是最小的无穷量,那比阿列夫零更大的无穷在哪呢?

NO.4上场吧!无理数

无理数可数吗?或者说实数可数吗?

答案是:NO

康托尔运用对角线法来论证这一点,证明过程很短,却堪称精妙绝伦! 妈妈问我为何跪下看书系列

考虑整个实数集是否可数,我们先考虑0-1之间的所有实数是否可数。假设存在某种规则能够列出0-1之间的所有实数:

0.1598545445……

0.6589745454……

0.5968974132……

0.9887946456……

0.3521587487……

0.1659842412……

……

以上的数随便写的,此时康托尔问,0.267865……在什么位置?

这个数是怎么取的呢?取第一个数的第一位小数加1,取第二个数的第二位小数加1,取第三个数的第三位小数加1,取第四个数的第四位小数加1……,也就是上面数中红色的数字加1。

假如0.267865……在第n个位置上,则它的第n位小数应该等于第n个数 也就是它自身的第n位小数加1。

简单说,这个数的第n位小数等于它本身第n位小数加1。显然这是不可能存在的!

所以不存在任何一种方法能够把0-1之间所有的实数全部列举出来,当然也不可能存在一种方法能够把全体实力列出来。

像这样的无穷称为不可数无穷,不管你承认还是不承认,同样是无穷,也能分出不同种类。无理数集、实数集称为不可数集。

在数轴上任取一段线段,由这些连续着的点构成的集合均为不可数集,又称连续统。基数记为c。

NO.5 c=ℵ1

既然已经明确了有理数代表着可数无穷,而无理数则代表着不可数无穷,那可数与不可数到底谁更多呢?换句话说,ℵ0与c谁更大呢?

事实上,从概率的角度来看,在数轴上任取一点,取到有理数的概率为0。

无理数是无限不循环小数,有理数包含整数、有限小数和无限循环小数,我们可以把整数和有限小数看成后面的小数位均为0的数,举个例子,1.8=1.800000……,后面的小数位都是0。

现在我们给一个数填充小数位,有无数个小数位需要我们填充,而填充的数字都是随机取的,所以说都取0或者说取到一列循环数的概率为0。借助于这样一个想法,无理数不仅比有理数多,而且多得多!

怎么样能够比无穷还要多?

对于集合{1},它有两个子集:空集、{1},子集组成的集合的基数为2^1;对于集合{1,2},它有四个子集空集、{1}、{2}、{1,2},子集组成的集合的基数为2^2,以此类推,若一个集合的基础为n,则其子集构成的幂集基数是2^n。

那如果原集合的基数是ℵ0呢?

事实上,康托尔已经证明出,c=2^ℵ0,这里的ℵ0是无穷大的,所以能想象c有多大吗?

康托尔所做的事情不止于此,他还猜想,在ℵ0和c之间不存在其他的无穷,即在ℵ0后的下一个无穷量便是c,即c=ℵ1 ℵ1即ℵ0后一个无穷量,这就是著名的“连续统假说”。1900年世界数学家大会上,希尔伯特把这个问题排在了20世纪23大有待解决的重要数学问题之首。

NO.6 数轴上见分晓!

关于数轴,我们都知道数轴上的点与实数是一一对应的,或许会存在这样的想法,任意两个有理数之间还存在无数个有理数,此外有理数与有理数之间还会有缝隙,那便是无理数,这个缝隙有多少并不为我们所知,但两有理数之间还存在着无数个有理数是必然的。

所以有人会说有理数像砖,构成了数轴的主体,无理数像是胶水,把砖与砖之间的缝隙补充完整,构成一条完整的数轴。

从两者的数量对比来看,显然以上的想法大错特错,无理数更像是构成数轴的砖,占据着数轴的绝大部分。说来说去其实就是这么一个问题:有理数和无理数在数轴上是如何分布的?

借用一下狄利克雷函数:

这就是把有理数与无理数作个分离,那函数图像长啥样?也许是这样?

显然这只能是一种美好的想象,要是能画出来就好了,我就知道有理数和无理数如何分布了。真实存在却画不出来说得就是这个函数,数轴上见不了分晓。

NO.7 可数无穷的可加性

说了老半天可数与不可数,却连数轴上的都无法作划分,区别这两个无穷又有什么意义?

有些时候是得区分一下的,比如在解释什么叫长度的时候。

线段由点构成,那为什么点的长度为0而线段长度却不为0?

造成这一误解的主要原因是我们错误地以为既然线段由点构成,那线段的长度就等于点的长度之和。即不断地计算0+0+0+0+……,按这么算结果应该始终为0才对。

怎么去计算0+0+0+0+……?先用第一个0加第二个0,再用结果加第三个0,一直这么加下去,以上计算的前提是这里所涉及的无穷必须是可数无穷,只有能先够把它们都先列出来,才能依次进行相加,先有可数才有可加。

然而问题是,线段上的点是可数无穷吗?不,它们是不可数无穷,是不能够列举出的,所以0+0+0+……的结果与线段的长度没有半毛钱关系,因为它们本来就不存在因果关系。


|有理数无理数区分

           

有理数无理数区分|
  • 从有理数与无理数的比较开始 有理数和无理数|
  • 从有理数与无理数的比较开始 有理数和无理数| | 从有理数与无理数的比较开始 有理数和无理数| ...

    有理数无理数区分|
  • 什么是有理数 有理数是什么|
  • 什么是有理数 有理数是什么| | 什么是有理数 有理数是什么| ...

    有理数无理数区分|
  • 三分之一是无理数还是有理数|
  • 三分之一是无理数还是有理数| | 三分之一是无理数还是有理数| ...