首页 > 寺庙

数学建模方法和步骤|

数学建模方法和步骤

模型准备

数学建模方法和步骤|

首先要了解问题的实际背景,明确建模目的,搜集必需的各种信息,尽量弄清对象的特征。

模型假设

根据对象的特征和建模目的,对问题进行必要的、合理的简化,用精确的语言作出假设,是建模至关重要的一步。如果对问题的所有因素一概考虑,无疑是一种有勇气但方法欠佳的行为,所以高超的建模者能充分发挥想象力、洞察力和判断力,善于辨别主次,而且为了使处理方法简单,应尽量使问题线性化、均匀化。

模型构成

根据所作的假设分析对象的因果关系,利用对象的内在规律和适当的数学工具,构造各个量间的等式关系或其它数学结构。这时,我们便会进入一个广阔的应用数学天地,这里在高数、概率老人的膝下,有许多可爱的孩子们,他们是图论、排队论、线性规划、对策论等许多许多,真是泱泱大国,别有洞天。不过我们应当牢记,建立数学模型是为了让更多的人明了并能加以应用,因此工具愈简单愈有价值。

模型求解

可以采用解方程、画图形、证明定理、逻辑运算、数值运算等各种传统的和近代的数学方法,特别是计算机技术。一道实际问题的解决往往需要纷繁的计算,许多时候还得将系统运行情况用计算机模拟出来,因此编程和熟悉数学软件包能力便举足轻重。

模型分析

对模型解答进行数学上的分析。横看成岭侧成峰,远近高低各不?quot;,能否对模型结果作出细致精当的分析,决定了你的模型能否达到更高的档次。还要记住,不论那种情况都需进行误差分析,数据稳定性分析。


|数学建模方法和步骤

   

数学建模方法和步骤|
  • 6÷6等于多少|
  • 6÷6等于多少| | 6÷6等于多少| ...

    数学建模方法和步骤|
  • 小学代数是什么|
  • 小学代数是什么| | 小学代数是什么| ...

    数学建模方法和步骤|
  • 乘法口诀几年级开始学|
  • 乘法口诀几年级开始学| | 乘法口诀几年级开始学| ...