首页 > 寺庙

催化燃烧废气处理设备|

催化燃烧废气处理设备

催化燃烧废气处理设备活性炭吸附处理有机废气是利用活性炭微孔能吸收有机性物质的特性,把大风量低浓度有机性废气中的有机溶剂吸附到活性炭中并浓缩,经吸附净化后的气体达标直接排空。其实质是一个物理的吸附浓缩的过程。并没有把有机溶剂处理掉。催化燃烧脱附是利用催化燃烧分解有机废气后产生的热空气加热活性炭中被吸附的有机溶剂,使之达到溶剂的沸点,使有机溶剂从活性炭中脱附出来,并把经浓缩后的高浓度废气引入到催化燃烧装置中。在催化剂的作用下,有机性物质在~250℃的催化起燃温度下被氧化反应转化为无害的水和二氧化碳排入大气。

催化燃烧废气处理设备|

催化燃烧也就是利用催化剂作为中间体,将有机废气在比较低的温度之下,净化为没有危害的二氧化碳和水汽,公式就是:CnHm+(n+1/4m)O2催化剂200~300℃nCO2+1/2mH2O

由于此反应是一个化学反应过程,并非明火的燃烧,因此安全可靠,且能彻底解决脱附时的二次污染。活性炭吸附—催化燃烧脱附把两者的优点有机地结合起来。即先利用活性炭进行吸附浓缩,当活性炭吸附达到饱和时,利用电加热启动催化燃烧设备,并利用热空气加热活性炭吸附床,当催化燃烧反应床加热到~250℃,活性炭吸附床局部达到60~150℃时,从吸附床解吸出来的高浓度废气就可以在催化反应床中进行氧化反应。反应后的高温气体经换热器的换热,换热后的气体一部分回用送入活性炭吸附床进行脱附,另一部分排入大气。脱附出来的废气经换热器换热后温度迅速提高,降低了催化燃烧的启动电功率,从而使催化燃烧装置及脱附过程达到小功率运行。

催化燃烧废气处理设备由预处理装置、预热装置、催化燃烧装置、防爆装置组成。 ①废气预处理:为了避免催化剂床层的堵塞和催化剂中毒,废气在进入床层之前必须进行预处理,以除去废气中的粉尘、液滴及催化剂的毒物。

该设备采用双气路连续工作,一般配有两个或多个吸附床可交替使用。催化燃烧室首先用活性炭吸附有机废气,达到饱和时停止吸附操作,然后用热气流从活性炭中解吸有机物,再生活性炭。解吸的有机物被浓缩(比原来浓度高几十倍),并被送入催化燃烧室,催化转化为CO2和H2O排放。

当吸附单元的活性炭吸附到饱和水平时,吸附单元切换到解吸单元。解吸装置需要外部加热。加热装置设在燃烧炉内。催化剂打开后同时预热。燃烧炉达到设定温度后,热风进入解吸床,有机废气经加热从活性炭表面解吸。

②预热装置:预热装置包括废气预热装置和催化剂燃烧器预热装置。因为催化剂都有一个催化活性温度,对催化燃烧来说称催化剂起燃温度,必须使废气和床层的温度达到起燃温度才能进行催化燃烧,因此,必须设置预热装置。但对于排出的废气本身温度就较高的场合,如漆包线、绝缘材料、烤漆等烘干排气,温度可达300℃以上,则不必设置预热装置。

③催化燃烧装置:一般采用固定床催化反应器。反应器的设计按规范进行,应便于操作,维修方便,便于装卸催化剂。

主要成分:铂金、钯金等贵金属

形状:方形蜂窝体

尺寸:A型150≤150≤150 mm,B型

为150*150*100mm

孔型:方形

孔密度:200 孔/in2

载体比表面:≥120m2/g

④防爆装置:为膜片泄压防爆,安装在主机的顶部。当设备运行发生意外事故时,可及时裂开泄压,防止意外事故发生

干式过滤器

为防止废气中的漆雾颗粒堵塞吸附填料(活性炭)从而影响其对有机物的吸附性能,须确保吸附处理系统的气源干净无尘。在进入活性炭吸附浓缩装置前必须对其进行深度的除尘预处理,以确保粉尘除尘效率达到99%以上。干式除尘器采用两级净化,一级中效,一级高效。两级干式过滤工艺,一级中效Z85,二级中效G95。

活性炭吸附箱

活性炭吸附箱是实现该喷漆废气达标排放的关键设备,选择性能优良的活性炭和设计合理的活性炭吸附装置尺寸至关重要。在本设备中采用新型模块化蜂窝状活性炭吸附材料,具有耐水的能力,其与粒(棒)状活性炭相比具有优势的热力学性能、低阻低耗、高吸附率等,极适用于大风量下使用,拥有优良的吸附性能,其结构为多孔蜂窝状,具有孔隙结构发达,比表面积大,流体阻力小等优点,该产品特别适用于大风量,低浓度工厂有机废气净化治理,如工厂的二甲苯、醋酸丁酯等有毒有害废气治理。

催化燃烧器

催化燃烧活性炭再生方法是:将脱附设备中的有机气体源通过引风机作用送入催化燃烧再生装置,首先通过除尘阻火器系统,然后进入换热器,再送入到加热室,通过加热装置,使气体达到燃烧反应温度,再通过催化床的作用,使有机气体分解成二氧化碳和水,高温洁净气体再进入换热器与低温脱附气体进行热交换,使脱附气体温度升高达到反应温度。脱附气体经过催化燃烧后去除率达到97%以上。

催化燃烧核心设备由换热器、催化床、电加热元件、阻火阻尘器和防爆装置等组成,阻火除尘器位于进气管道上,防爆装置设在主机的顶部。

催化燃烧床:

材质:Q235*3mm

保温层:陶瓷纤维-200mm

设备规格:1.8m×1.4m×2.6m

功率:160kw

加热温度:360度

阻火器

阻火器是阻止传播火焰(爆燃或爆轰)通过的装置,由阻火芯、阻火器外壳及附件构成,是阻止易燃气体火焰蔓延的安全装置。

燃烧所需要的必要条件之一就是要达到一定的温度,即着火点。低于着火点,燃烧就会停止。依照这一原理,只要将燃烧物质的温度降到其着火点以下,就可以阻止火焰的蔓延。当火焰通过阻火元件的许多细小通道之后将变成若干细小的火焰。设计阻火器内部的阻火元件时,则尽可能扩大细小火焰和通道壁的接触面积,强化传热,使火焰温度降到着火点以下,从而阻止火焰蔓延。

系统风机

引风机提供净化系统正常运行的动力,是必不可少的设备之一。通常风机采用后置式布置,风机后置式布置可以减少污染物质对风机腐蚀、净化设备在负压操作下布风均匀、废气无泄漏等优点。进风阀门采用法兰连接,相互之间具有足够的距离,便于阀门之间的管道安装及设备的维修和装拆。风机与进风管采用由补偿器柔性连接,以避免风机的正常震动影响风管及相关设备。

维护保养注意事项:

活性炭更换周期:一般情况下,废气处理设备都会使用到活性炭,要有规律的活性炭再生或者更换时间,正常情况下我们要按照工厂上班时间来进行计算,每个八个小时的作业时间,活性炭脱附处理的时间也应该在三个月左右,这一般情况下的处理周期,我们也可以按活性炭的实际使用情况来进行详细计算脱附时间,而且活性炭使用两年之后就会失去再生效果,这样我们就需要进行更新更换;

活性炭更换方法:为了我们在作业过程中更方便的进行更换活性炭,活性炭一般是采用上进式,出料口我们要采用下出式;

溶剂的收回:废气处理设备的溶剂都是不溶于水的,在水中会与水分方便收回,回收后的溶剂我们可以混合水一块加到煤炭中一块送进锅炉进行烧掉;

混合液浓度:吸收塔,贮液箱中的Na0H、NaC10混合液浓度应该能保持在2%-6%左右,而且当浓度低于2%的时候,需要加入混合液;

日常维护:废气处理设备的日常需要做的就是时常 检查风 机、水泵的运转使用是否正常运转,滤液器、喷嘴是否通畅或堵塞、液位是否正常、浮球是否失灵等日常维护。还有就是吸收中和液的浓度是否在规定范围内等。

催化燃烧废气处理环保设备

催化燃烧废气处理环保设备,对催化燃烧的研究,最初是从发现铂对甲烷燃烧的催化作用而开始的。催化燃烧对于改善燃烧过程,降低反应温度,促进完全燃烧,抑制有毒有害物质的形成等方面有着极为重要的作用。催化燃烧处理广泛用于石油、化工、橡胶、涂装、印刷等行业车间里挥发出的有害有机废气净化处理中,苯类,醇类,醚类等有机废气均能净化。该装置系统设计完整,附属设备配套齐全,净化效率高,自动化程度高。它能有效地净化车间环境、消除污染、改善劳动操作条件,确保工人身体健康,并能解决二次污染。最适用于低浓度(50~1000ppm)且回收经济价值不大,不宜采用吸附回收处理的有机废气,尤其对大风量的处理场合。处理大风量低浓度废气等特点,浓度稍高时,还可进行二次余热回收,大大降低生产运营成本。

催化燃烧是把有机废气加热到启燃温度,在催化剂的作用下进行无火焰燃烧,生成二氧化碳和水并释放大量热量。催化燃烧净化装置根据催化燃烧机理,由催化室、电加热箱、热交换器、风机、电控柜五大部分组成。

干式过滤器

为防止废气中的漆雾颗粒堵塞吸附填料(活性炭)从而影响其对有机物的吸附性能,须确保吸附处理系统的气源干净无尘。在进入活性炭吸附浓缩装置前必须对其进行深度的除尘预处理,以确保粉尘除尘效率达到99%以上。干式除尘器采用两级净化,一级中效,一级高效。两级干式过滤工艺,一级中效Z85,二级中效G95。

活性炭吸附箱

活性炭吸附箱是实现该喷漆废气达标排放的关键设备,选择性能优良的活性炭和设计合理的活性炭吸附装置尺寸至关重要。在本设备中采用新型模块化蜂窝状活性炭吸附材料,具有耐水的能力,其与粒(棒)状活性炭相比具有优势的热力学性能、低阻低耗、高吸附率等,极适用于大风量下使用,拥有优良的吸附性能,其结构为多孔蜂窝状,具有孔隙结构发达,比表面积大,流体阻力小等优点,该产品特别适用于大风量,低浓度工厂有机废气净化治理,如工厂的二甲苯、醋酸丁酯等有毒有害废气治理。

催化燃烧器

催化燃烧活性炭再生方法是:将脱附设备中的有机气体源通过引风机作用送入催化燃烧再生装置,首先通过除尘阻火器系统,然后进入换热器,再送入到加热室,通过加热装置,使气体达到燃烧反应温度,再通过催化床的作用,使有机气体分解成二氧化碳和水,高温洁净气体再进入换热器与低温脱附气体进行热交换,使脱附气体温度升高达到反应温度。脱附气体经过催化燃烧后去除率达到97%以上。

催化燃烧核心设备由换热器、催化床、电加热元件、阻火阻尘器和防爆装置等组成,阻火除尘器位于进气管道上,防爆装置设在主机的顶部。

阻火器

阻火器是阻止传播火焰(爆燃或爆轰)通过的装置,由阻火芯、阻火器外壳及附件构成,是阻止易燃气体火焰蔓延的安全装置。

燃烧所需要的必要条件之一就是要达到一定的温度,即着火点。低于着火点,燃烧就会停止。依照这一原理,只要将燃烧物质的温度降到其着火点以下,就可以阻止火焰的蔓延。当火焰通过阻火元件的许多细小通道之后将变成若干细小的火焰。设计阻火器内部的阻火元件时,则尽可能扩大细小火焰和通道壁的接触面积,强化传热,使火焰温度降到着火点以下,从而阻止火焰蔓延。

系统风机

引风机提供净化系统正常运行的动力,是必不可少的设备之一。通常风机采用后置式布置,风机后置式布置可以减少污染物质对风机腐蚀、净化设备在负压操作下布风均匀、废气无泄漏等优点。进风阀门采用法兰连接,相互之间具有足够的距离,便于阀门之间的管道安装及设备的维修和装拆。风机与进风管采用由补偿器柔性连接,以避免风机的正常震动影响风管及相关设备。

催化燃烧处理设备

催化燃烧处理设备,吸附法处理VOCs的脱附温度、效果及分析

摘要:在采用炭基吸附剂处理VOCs时,一般认为:脱附温度与所脱附物质的沸点有关,而且脱附温度越高,脱附效率越高。通过对大量工程实践的分析得出结论:脱附温度与所脱附物质的沸点基本没有关系,而是和它的饱和蒸气压密切相关;脱附温度并不是越高越好,有些物质采用高温脱附时,其脱附率反而下降。文章提出了脱附温度的确定原则和方法,按照此法选择脱附温度,可大大减少能源浪费,降低运行成本。

1前言

在采用炭基吸附剂处理VOCs工艺中,不论采用低压水蒸汽脱附还是氮气脱附,都是将脱附介质加热到一定温度后,对吸附质进行脱附。采用水蒸汽脱附时,一般都是将水蒸汽加热到100℃,主要是为了利用水的潜热,另外也不用考虑设备的承压问题;采用氮气脱附时,加热温度可选择,当温度超过100℃时,也不必考虑设备的承压问题。

催化燃烧处理设备

目前在脱附温度的选择上,一般都是采用粗犷的方法:即不论脱附什么物质,水蒸汽温度一般都定在100%或略高;氮气则根据脱附物质的性质确定。因此,在脱附温度的选择上常出现误区1)对于一种挥发性有机物的脱附温度,一般认为:要想把这些物质从吸附剂上脱附下来,其脱附温度必须高于该物质的沸点;2)由于认识上的误区,使得本不应该使用高温脱附时,却错误采用高温进行脱附,不仅收不到理想的效果,而且会造成能源浪费。

2吸附法治理VOCs工艺

采用吸附法处理VOCs工艺流程如下图所示。

催化燃烧处理设备

3.1升温脱附

采用升高温度的方法,使吸附质分子由固体吸附剂上逸出而脱附的方法,称为升温脱附。升温脱附采用水蒸汽、热的惰性气体(如氮气)、热烟气或采用电感加热等方式。

3.2降压脱附

降压脱附又称抽空脱附,是降低饱和吸附剂周围的压力,使其上的吸附质逸出的脱附方法。降压后气相中吸附质的分压随之降低,与之平衡的吸附量亦降低,吸附质即被脱附。

3.3置换脱附

采用在脱附条件下与吸附剂亲合能力比原吸附质更强的物质,将原吸附质置换下来的方法,称为置换脱附。

3.4吹扫脱附

采用不被该吸附剂吸附的气体(如惰性气体)对床层进行吹扫,将吸附质脱附下来,称为吹扫脱附。

实际应用中,往往是几种脱附方法结合,例如采用水蒸汽脱附,就同时具有加热和吹扫的作用。

4VOCs脱附温度、脱附效果及分析

4.1挥发性有机物的脱附情况

在工程实践中可观察到部分挥发性有机物的脱附温度及效率见下表。

催化燃烧处理设备

(1)脱附温度与物质的沸点基本没有关系。以三甲苯为例,其沸点是164.7℃,而采用100℃的水蒸汽,却能够将其很好地脱附下来(脱附率97.01%)。而对于比它的沸点低得多的丙烯酸(沸点141℃),采用100%的水蒸汽进行脱附时,丝毫不起作用。

(2)纵观上表中的各种物质,凡是饱和蒸气压在10.0kPa以上的物质,采用100%的水蒸汽都能够很好地脱附下来。而饱和蒸气压较低的物质,如苯乙烯(25℃时为0.841)、邻苯二甲酸二丁酯(148.2℃时为0.13)、丙烯酸丁酯(20℃时为0.53)等,虽然沸点比三甲苯低得多,但由于它们的饱和蒸气压很低,采用100%的水蒸汽仍然无法将它们脱附下来。

由此可得出结论:物质的脱附温度基本与沸点无关,而和它的饱和蒸气压有密切关系。

(3)一些物质之所以难以脱附,皆是因为它们的饱和蒸气压很低造成的。由此,也可纠正对苯乙烯难以脱附的原因归结到“苯乙烯在吸附剂表面发生了聚合反应”的错误认识。

(4)对于难以脱附的物质,当采用热氮气脱附时,并不是温度越高脱附的越彻底,过高的脱附温度反而使其脱附效率下降。如表中所示,在采用热氮气对甲基异丁酮(沸点115.8℃,20℃时的饱和蒸气压为2.13kPa)进行脱附时发现,当温度升至100℃时,脱附率只有63.10%;为提高脱附率,将氮气温度提高到170℃,此时的脱附率达到76.50%;这时考虑再升温已毫无意义,将温度试着下降,结果发现,脱附率反而逐渐上升。当温度降至110℃时,脱附率达到了峰值99.20%。因此得出,对于难以脱附的物质进行脱附时,并不是温度越高,脱附越彻底,过高的脱附温度反而使其脱附效率下降。如遇此类问题时,应通过实验,慎重选择适当的脱附温度,以取得最佳的脱附效率。

4.2分析

(1)脱附温度与饱和蒸气压的关系]。从脱附原理上讲,吸附质从吸附剂表面脱附的根本原因是,吸附质分子必须克服吸附剂表面对它的引力,增大它脱离表面的推动力。也就是说,要想使吸附质分子从吸附剂表面脱附下来,就必须给它能量或推动力,使其能够从吸附剂表面“蒸发”到吸附剂孑L道中,从而进入气相主体。而在通常采用的脱附方法中,加热脱附是给其提供能量,以增加分子的动能;吹扫脱附和降压(真空)脱附,都是为了降低吸附剂孔道中废气分子的分压,也就是蒸气压,给废气造成一个浓度差,从而给废气分子由吸附剂表面向气相转移提供一个推动力,这个推动力越大,废气分子的脱附速度就越快。所以,从这个理论出发就不难理解,吸附质的脱附温度是与其饱和蒸气压直接相关的,而与它的沸点无关。

(2)一些饱和蒸气压较低的物质在脱附时,温度过高反而会使脱附率下降。从吸附的分类上说,可分为物理吸附和化学吸附。物理吸附,所形成的键能只在范德华力的范围,即最大只有80kJ/kmol左右,而化学吸附的吸附键力可达400kJ/kmol以上。在物质的吸附上,往往存在一种现象:当温度低时是物理吸附,如果温度升高,则可能转变为化学吸附[3]。也就是说,当脱附温度过高时,使本来存在的物理吸附状态可能转化成化学吸附状态,使得吸附键的键能大大增加,因而反而不易脱附下来。这就是为什么温度过高,反而使物质脱附率下降的原因。

当然,要想彻底搞清这个问题,只能对两种状态的吸附键的键能进行测定。但目前对吸附键键能的测定还较困难,虽然有人采用同步辐射光电离的方法,能够测定一些物质的化学键的键能,但采用此法能不能很好地测定吸附键的键能,目前还未见报道。

催化燃烧处理设备

5对脱附温度确定方法的建议

(1)对于饱和蒸气压10kPa的物质,原则上都可以采用100℃的水蒸汽进行脱附;但从节约能源的角度讲,建议对饱和蒸气压较大且沸点较低(如70℃)的物质,如:丙酮:沸点56.1℃,饱和蒸气压2371.86kPa(100℃);四氢呋喃:沸点66℃,饱和蒸气压101.33kPa(66.0℃);二氯甲烷:沸点39.75℃,饱和蒸气压80.00kPa(35℃)等,建议采用较低温度的氮气进行脱附,这样不仅可降低脱附剂的温度,同时在对脱附后混合气体冷凝时,也不用采用温度很低的冷凝水进行冷凝分离(如二氯甲烷需要采用7℃低温水进行冷凝分离),就可以节约能源。由于采用了氮气脱附,也就省去了对冷凝水的处理问题。

(2)对于饱和蒸气压较低的物质采用高温脱附时,也要采用适当的温度进行脱附,这样既能收到高的脱附

效率,也能达到节能目的。当然,对于各种物质脱附温度的选择,目前还没有现成的数据可以查询,还需要进行反复实验才能初步确定,然后再进行经济可行性分析,才能最后确定所选择的脱附温度是否合适。

6结语

(1)挥发性有机物的脱附温度与其沸点没有关系,而与饱和蒸气压有着密切关系。因此,可根据物质的饱和蒸气压选择适当的脱附剂,确定合适的脱附温度。

(2)从节能的角度考虑,对于沸点较低而饱和蒸气压较高的挥发性有机物,建议采用较低温度(如100oC)的氮气进行脱附,这样既可以在脱附时节约能源,而且在冷凝分离时也可达到节能目的,同时还省去了污水处理的费用。

(3)对于饱和蒸气压特别低、沸点较高的挥发性有机物,采用高温脱附时,并不是温度越高脱附效果越好,过高的温度反而会降低脱附率。


|催化燃烧废气处理设备

  

催化燃烧废气处理设备|
  • 催化燃烧环保设备制作|
  • 催化燃烧环保设备制作| | 催化燃烧环保设备制作| ...

    催化燃烧废气处理设备|
  • 喷漆废气净化处理设备|
  • 喷漆废气净化处理设备| | 喷漆废气净化处理设备| ...