首页 > 寺庙

椭圆的参数方程怎么推导的|

椭圆的参数方程怎么推导的

直角坐标系的椭圆方程是——x2/a2+y2/b2=1,

椭圆的参数方程怎么推导的|

∵cos2t+sin2t=1,

∴x2/a2+y2/b2=cos2t+sin2t,

∴x2/a2=cos2t,y2/b2=sin2t,

x2=a2cos2t,y2=b2sin2t,

于是有椭圆的参数方程——x=acost,y=bsint。

椭圆参数方程中参数的几何意义

椭圆参数方程中参数的几何意义是θ表示原点与椭圆上一点连线与x正半轴的夹角,或称为仰角。椭圆(Ellipse)是平面内到定点FF2的距离之和等于常数(大于|F1F2|)的动点P的轨迹,FF2称为椭圆的两个焦点。其数学表达式为:|PF1|+|PF2|=2a(2a>|F1F2|)。椭圆是圆锥曲线的一种,即圆锥与平面的截线。椭圆的周长等于特定的正弦曲线在一个周期内的长度。

椭圆的标准方程

椭圆的标准方程共分两种情况:

当焦点在x轴时,椭圆的标准方程是:x²/a²+y²/b²=1,(a>b>0); 

当焦点在y轴时,椭圆的标准方程是:属y²/a²+x²/b²=1,(a>b>0)。

其中a²-c²=b²。

椭圆性质:

如果在一个平面内一个动点到两个定点的距离的和等于定长,那么这个动点的轨迹叫做椭圆。

椭圆的图像如果在直角坐标系中表示,那么上述定义中两个定点被定义在了x轴。若将两个定点改在y轴,可以用相同方法求出另一个椭圆的标准方程。

在方程中,所设的称为长轴长,称为短轴长,而所设的定点称为焦点,那么称为焦距。在假设的过程中,假设了,如果不这样假设,会发现得不到椭圆。当时,这个动点的轨迹是一个线段,当时,根本得不到实际存在的轨迹,而这时,其轨迹称为虚椭圆。


|椭圆的参数方程怎么推导的

  

椭圆的参数方程怎么推导的|
  • 参数的几何意义是什么|
  • 参数的几何意义是什么| | 参数的几何意义是什么| ...

    椭圆的参数方程怎么推导的|
  • 椭圆的半长轴和半短轴是什么图片|
  • 椭圆的半长轴和半短轴是什么图片| | 椭圆的半长轴和半短轴是什么图片| ...

    椭圆的参数方程怎么推导的|
  • 椭圆的长轴是什么|
  • 椭圆的长轴是什么| | 椭圆的长轴是什么| ...