二元函数的定义域一定是区域吗
二元函数的定义:设平面点集D包含于R,若按照某对应法则f,D中每一点P(x,y)都有唯一的实数z与之对应,则称f为在D上的二元函数。首先,二元函数的定义区域是指满足区域条件的定义域,即该(部分)定义域构成区域,这需要看一看区域的定义,简单说,二元函数的定义域可以是几个孤立的平面上的点,这样的定义域就不构成区域,从而也就不是定义区域,所谓区域,在概念上应该是成片状的,由此得论,二元函数的定义域一定是区域的。
开集一定是区域吗
开集一定是区域,开集,是拓扑学里最基本的概念之一。设A是度量空间X的一个子集。如果A中的每一个点都有一个以该点为中心的邻域包含于A,则称A是度量空间X中的一个开集。
拓扑学(topology),是研究几何图形或空间在连续改变形状后还能保持不变的一些性质的学科。它只考虑物体间的位置关系而不考虑它们的形状和大小。在拓扑学里,重要的拓扑性质包括连通性与紧致性。
函数的定义域是什么
函数的定义域指函数自变量的取值范围,即对于两个存在函数对应关系的非空集合D、M,集合D中的任意一个数,在集合M中都有且仅有一个确定的数与之对应,则集合D称为函数定义域。
函数,最早由中国清朝数学家李善兰翻译,出于其著作《代数学》。之所以这么翻译,他给出的原因是“凡此变数中函彼变数者,则此为彼之函数”,也即函数指一个量随着另一个量的变化而变化,或者说一个量中包含另一个量。
|二元函数的定义域一定是区域吗
二元函数的定义域一定是区域吗 函数的定义域 开集一定是区域吗