首页 > 寺庙

两个矩阵合同的充要条件|

两个矩阵合同的充要条件

二次型用的矩阵是实对称矩阵。两个实对称矩阵合同的充要条件是它们的正负惯性指数相同。由这个条件可以推知,合同矩阵等秩。相似矩阵与合同矩阵的秩都相同。设M是n阶实系数对称矩阵,如果对任何一非零实向量X,都使二次型f(X)=X′MX>0,则称f(X)为正定二次型,f(X)的矩阵M称为正定矩阵。一种实对称矩阵。正定二次型f(x1,x2,…,xn)=X′AX的矩阵A(=A′)称为正定矩阵。判定定理1:对称阵A为正定的充分必要条件是:A的特征值全为正。 判定定理2:对称阵A为正定的充分必要条件是:A的各阶顺序主子式都为正。判定定理3:任意阵A为正定的充分必要条件是:A合同于单位阵。

两个矩阵合同的充要条件|

矩阵等价的充要条件

矩阵等价的定义:若存在可逆矩阵P、Q,使PAQ=B,则A与B等价。所谓矩阵A与矩阵B等价,即A经过初等变换可得到B。

矩阵等价的充要条件

是同型矩阵且秩相等。相似必定等价,等价不一定相似。两矩阵等价,秩相等,列向量,行向量极大线性无关组数相等。

等价矩阵的性质

1.矩阵A和A等价(反身性);

2.矩阵A和B等价,那么B和A也等价(等价性);

3.矩阵A和B等价,矩阵B和C等价,那么A和C等价(传递性);

4.矩阵A和B等价,那么IAI=KIBI。(K为非零常数)

5.具有行等价关系的矩阵所对应的线性方程组有相同的解

6.对于相同大小的两个矩形矩阵,它们的等价性也可以通过以下条件来表征:(1)矩阵可以通过基本行和列操作的而彼此变换。(2)当且仅当它们具有相同的秩时,两个矩阵是等价的。

矩阵相似的充要条件

线性变换在不同基下所对应的矩阵是相似的;反过来,如果两个矩阵相似,那么它们可以看作同一个线性变换在两组基下所对应的矩阵。

矩阵相似的充要条件

设A,B是数域P上两个矩阵,A与B相似的充分必要条件是它们有相同的不变因子。两个同级复数矩阵相似的充分必要条件是它们有相同的初等因子。

n阶矩阵A与对角矩阵相似的充分必要条件为矩阵A有n个线性无关的特征向量。注:定理的证明过程实际上已经给出了把方阵对角化的方法。

若矩阵可对角化,则可按下列步骤来实现

(1)求出全部的特征值;

(2)对每一个特征值,设其重数为k,则对应齐次方程组的基础解系由k个向量构成,即为对应的线性无关的特征向量;

(3)上面求出的特征向量恰好为矩阵的各个线性无关的特征向量。


|两个矩阵合同的充要条件

  

两个矩阵合同的充要条件|
  • 矩阵相似的充要条件|
  • 矩阵相似的充要条件| | 矩阵相似的充要条件| ...

    评论